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Summary—The exact method for designing band-stop filters in

transmission lines is here adapted to design a four-element filter that

is perfectly matched at a fundamental frequency and has infinite at-

tenuation (theoretically) at the second, third, and fourth harmonics.

The form of the filter is suitable for construction in TEM-mode

strip transmission lines. How to obtain other combinations of three
infinite rejection frequencies is also shown. Each filter is derived
from a Cauer-type prototype network obtained from published tables
of element values. The computed response of a test design is seen
to be a precise mapping of the response of the prototype.

INTRODUCTION

A

FILTER composed of three open-circuited stubs

separated by two quarter-wavelength trans-

mission-line sections can be designed to have a

perfect match at one frequency and infinite attenuation

(theoretically, if the circuit were dissipationless) at any

chosen (harmonic or other) frequency [1]. The design

method is facilitated by available tables of element

values for a low-pass filter prototype [2 ]– [4 ]. By using

exact design techniques and formulas for band-stop

filters in transmission line [.5 ]– [7], subject to certain

added constraints on the choice of a prototype, the en-

gineer can readily complete the design. The low-pass

prototype alluded to above is a simple LC ladder net-

work consisting of three reactive elements (n= 3).

The purpose of this paper is to extend this design

method to the case of a harmonic rejection filter having

infinite attenuation for three clustered harmonic fre-

quencies. With this slightly more complex method there

is still zero attenuation of the fundamental frequency.

Instead of having pass bands between the three specified

harmonic frequencies, the filter attenuation falls to a

minimum value fixed by the choice of the prototype

element values. The prototype is a (low-pass) Cauer-

type network (n= 3 or 4) having one finite frequency of

infinite attenuation. Exact design formulas are used [6],

and published tables of element values for these filters

[8] are employed, as before.

By means of an exact mapping procedure [5]- [7 ]

the frequency of perfect match w,’ shown in the at-

tenuation curve of the low-pass prototype (Fig. 1), is

made to map into the fundamental frequency cowof the
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1 The lower and higher harmonic frequencies must be equi-spaced
from the middle frequency.

Fig. l—Attenuation of a low-pass filter (n= 4) with Chebyshev
response, vs frequency normalized to the fundamental ~..
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Fig. 2—Attentuation of a transmission-line filter that is matched at
the fundamental frequency, has infinite attenuation of the sec-
ond, third, and fourth harmonics, and which is deri~,ed from the
prototype by an exact method.

transmission line filter (Fig. 2). At the same time, the

frequency of infinite attenuation U2’ is mapped into,

say, the second and fourth harmonics of the transmission

line filter, 2tio and 4CO0respectively, while infinite fre-

quency in the frequency plane of the prototype is

mapped into the third harmonic 3a0. other combina-

tions are possible, as is explained below. Note that for

this case, 3w. is also labelled coo which is the design fre-

quency for which the line sections are a quarter-wave-

length long. In this procedure the second (or middle)

infinite rejection frequency is always the design fre-

quency WO, from which the other two infinite rejection

frequencies are equi-spaced.

As with all transmission-line filters designed by this

method, the response shape (as in Fig. 2, for example) is

periodic in u with an interval 2W0, and each period has a

symmetry axis at odd multiples of coo.

The design method consists in first determining the

normalized value of coz’ (Fig. 1) needed for the mapping

process, which is fully defined in Table 1. This fre-

quency, tiz’, and the specified maximum pass-band

attenuation A ~ unique] y determine the prototype ele-
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TABLE I

DEFIFWrIONOF PARAMETERS AND MAPPI~GFUNCTXON

1. De$nition of Pumwleters

0’=Prototype frequency
u= Transmission line filter frequency
A=acog ’
a=cot (7/2 0J2/6JO)

m’=frequeucy of infinite attenuation of the prototype filter
oz=low~st of three harmoni~ frequencies to be rejected
CW=deslgn frequency at wh?ch all line sections are XO/4 long;

also the middle harmomc frequency

2. il~appin~ Ftw.ction
~{=A tan (7/2 ~/uQ)

3. Corresponding Frequencies

u’
plane

o
(lb’

w ‘
w,’
W’
m

——

m-plane

WZLOO(m is always even)
WZw”i @“

Center frequency of all pass bands
Frequency of perfect match

(fundamental)
tTpper edge of pass band
Beginning of stopband
Infinite rejection frequencies
Infinite rejection frequencies
Design frequency

ment values. The prototype is then directly trans-

formed to a transmission-line equivalent, which is

further modified to make it suitable for construction in

strip line.

The following example illustrates the method. Here

the second, third, and fourth harmonics will be com-

pletely suppressed theoretically (Fig. 2). A four-reactive

element prototype (n= 4) will be usecl. (Although three

elements would also suffice for infinite attenuation of

three harmonic frequencies, the minimum attenuation

between harmonics would fall to a lower value.)

DESIGN NIETHOD

.4. Findings the Prototype Ciycuit Element Values

The prototype filter (n= 4) is shown in Fig. 3, and

tables of element values, including values of A,, Afl, CUZ’

and a,’ for this circuit as defined in Fig. 1 are given on

pp. 37 to 56 of [8], but in reverse order of that in Fig. 3.

( [8] is a book published by Telefunken of Western

Germany, which contains tables of element values for

low-pass filters with equi-ripple attenuation charac-

teristics in both the pass band and stop band. The

fineness in the variation of the parameters which dis-

tinguish one filter design from its nearest neighbors in

the tables, is the quality which lends itself to the method

of this paper and permits the bypassing of what might

otherwise be quite complicated mathematics. )

Each table gives many designs of the same circuit, all

with the same maximum pass-ha nd reflection co-

efficient (which is different for each table) but with dif-

ferent positions of the finite poles of attenuation. How-

ever, only one design of each table fulfills the require-

ments of this procedure. The immediate problem is to

find that set of designs. The tables are so arranged that

to do so it is only necessary to establish a simple rela-

tionship between uZ’ and a,!. One then determines which

‘A=g0Lk4L
Fig. 3—Low-pass prototype (n= 4) with element ~,ahles g, defined

in terms of L (henries), C (farads) and R (c,h ms).

line of any table (each line specifies a complete proto-

type filter) satisfies this relationship; the same Iin e of all

tables (for this circuit) will also satisfy that relationship.

(Lines in the table are indexed by the modular angle O

for easy identification.) This also means, as can be as-

certained by examining the tables of element values,

that uZ’ and u.’ will be the same for all protcltype circuits

in the set, which is a welcome simplificaticm. However,

each circuit will have a different pass-band tolerance. We

first note the inverse relationship between pass-band and

stop-band frequencies which is characteristic of Cheb y-

shev rational function filters [9]

W2’%’ = Cda’q’. (1)

Since ml’ = 1 for the prototype, we obtain

(2)

Next we find co,’ from the mapping function of Table I.
Thus

&sv2 = uw’ tan (7Ko@-00) (3)

where WZ’ is the frequency of infinite attenuation in the

prototype frequency plane. (Recall that we wish to map

wZ’ into the second harmonic frequency in the frequency

plane of the transmission-line filter.2) The bandwidth

factor (here it is more like a distortion factor), is de-

fined by

a = ctn (7rcd2/20Jo). (4)

Next, after substituting m = (3/2)tiz in (4) we solve for

a obtaining a = l/v’~, thereby fully specifying the

mapping parameters.

Now we substitute this value of a into (3) and solve

for WV’ where w =uO/3, obtaining

(5)

Finally, combining (2) and (5) yield the clesired rela-

tionship

UZ’2 = 3W8’. (6)

2 See Table I for a list of corresponding frequencies.
3 One might also establish a similar relationship between .Ls and G

of Fig. 3, since these elements uniquely determine W’. For this case
one would obtain 3A2L&t= 1, whence, with A= aog’== 1.6011 the rela-
tionship ~3c8=0.129929 would have to be satisfied. The example to be
discussed in this paper (case of O= 27° of the element tables for n= 4)
satisfies this relationship with 0.1 oer cent error.. ..... . . . .
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The set of suitable prototype circuits is found by sub-

stituting into (6) pairs of values wZ’ and co,’ from one of

the tables of element values [8] until agreement is

reached between the right and left members, inter-

polating if necessary. It is thus found that the pair of

values w,’= 2.539, COZ’= 2.773, for modular angle 0=27°,

is the best solution since it satisfies (6) with only a 0.1

per cent error. By comparison, the next best pair (with

19= 280), although differing from the above pair by ap-

proximately only one per cent, when inserted in (6) yields

greater than a one per cent error. The pair of values of

COS’and US’ for 9 = 26°, again different by only one per

cent from those for 6 = 27°, yields more than a 5 per

cent error. Therefore interpolation in this case is prob-

ably not necessary and each line indexed by 9 = 27° with
~~f = 2,539 and w,’ = 2,773, of the eiement value tables

for the circuit of Fig. 3, may be used for a multi-

harmonic filter prototype.

B. A Pplying the Exact Design ibfetl~od

The design formulas in Table II of [7] for the case

n = 4 are here adapted to obtain design formulas for

the quarter-wave stubs and connecting lines in Fig. 4.

Note that the prototype in Fig. 3 has one two-element

branch (Lt, Ct) while the previous formulas [6] were

based on the use of a simple shunt-L series-C prototype

network. For this reason the formulas for n = 4 must be

revised slightly. The formula for one of the simple shunt

stubs must be replaced by two formulas, one for a short-

circuited stub Zt”, and one for an open-circuited stub

Zi’, as shown in Fig. 4. The only stub formula in the

original design equations that is suitable for replace-

ment is the formula for 23, since only that formula owes

its derivation to a direct mapping of the corresponding

prototype element, without the application of IXuroda’s

identity [5], [6]. The same is true for one inner stub in

most of the formulas for other values of n, and the stub

in question can be identified by the fact that its formula

has one term only [6]. The set of modified formulas for

n = 4 is given in Table II. In the design formulas of

Table II the elements R, L, and C are replaced by g,, de-

fined in Fig. 3. Next, we choose one of the many usable

networks. The particular network chosen here is the

first listed for ~t = 4 with equal terminations (the case of

6= 27° on p. 37 in [8]). The reason for this choice is that

the two extreme values (go and gs”) have the smallest

ratio for any design of the set (6’= 27°), and this is help-

ful in obtaining realistic values of impedance for lines

and stubs. The pass-band tolerance, incidentally, is also

the least. (The maximum reflection coefficient for this

set of element values is one per cent, and the correspond-

ing attenuation loss is 0.004343 db. ) The element val-

ues are go=l, gl=0.4138, g2=0.7926, gt’ =0.6285, gs”

=0.2069, g,= O.2498, g~= 1.

iWow we compute A = awz’ = 1.6011, and then, with the

aid of Table 11 we compute the stub and line imped-

ances as defined in Fig. 4. These impedances (not

all of which are final) are 21= 3.5093, 22== 0.88658,

Z;= O.33127, 2,’’ =0.99393, Z,=3..5OO3 and

ZM=l.3985, z’,t=~.8705, Z34= 1.4000.

The final step is to convert the two-wire filter of Fig.

4 into a type suitable for strip-line construction, as in

Fig. 5. The difference between these two forms of the

same filter lies in the third stub (or stubs). In Fig. 5, the

third stub, which is open-circuited like the others in that

network, consists of two AO/4 sections in tandem in

place of two stubs in series [IO]. No difficult series-

parallel connection is required here, as it is in the filter

of Fig. 4.4 The formulas for converting the series stubs

to the tandem stubs are given in Fig. 6, and their proof

is given in the Appendix. The stub impedances (Fig. 5)

are found to be ZM= 1.3249 and Z3B=S.9717, thus com-

pleting the design in terms of normalized impedances.

The computed filter response in Fig. 7 is seen to pre-

cisely confirm the foregoing theory.

It is worth noting that the length of the short stubs

alone determines the center frequency of infinite

attenuation (30,). The relative positions of the other

two frequencies of infinite attenuation (200 and 4w)

depend on the relation between the two sections of the

long stub

23A
— = ctn2 42
Z~B

where & is the electrical length of each section of the

long stub at frequency ti~ (here ctn2 q52= 1/3), Although

the element values of the prototype circuit do not in

either case determine the conditions for suppression of

specific harmonics, they do play a part in determining

all other aspects of the filter response.

It is often desirable to know the positions of the

virtual open- and short-circuit planes as, for example,

when a filter of this type is used with a varactor har-

monic generator. The open- and short-circuit planes at

the three harmonic frequencies are easily determined as

follows: First, in the case of the center (third) har-

monic frequency it is clear that the open-circuited

quarter-wave long stubs at each end of the filter pro-

duce an effective short circuit at both terminals. Second,

~ The series-para Ilel stubs Z?’ and 28” of Fig. 4 are not, however,
impossible to construct in stripline. They can be made of either

1 ) an open-circuited shunt stub within an open hollow cylinder which
is sandwiched betweeli and short circuited to the ground planes (on the
cylinder’s far end), or

2) a shunt stub surrounded by a hollow cylinder which is open-
circuited to the line and ground planes, but is internally short-
circuited to, and supported by, the inner stub on its far end. Interest-
ingly enough, such re-entrant coaxial structures can also be used to
reduce by half the over-all length of the tandem double stub 28 of Fig.
5. In this case we would have

3) a hollow shunt stub open-circuited on its far end, within which
lies on open-circuited stub supported on its far end by the ground
planes.

Finally, the tandem double stub can be replaced by either of two
electrical equivalents consisting of parallel-coup]ed Iines shown in
Figs. 7 and 13 of [6j, i.e., the parallel-coupled line resonator and the
spur-line resonator, respectively, used as open-circuit stubs.
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zfi-

Z12 ’23 z 34

Fig. 4—Balanced transmiss ion-line type ]multiharmonic rejection
filter, derived from the prototype filter of Fig. 3 bv the exact de-
sign formulas of Table II. (NOTE: All stubs and connecting lines
are Xo/-l long, where COO=3QV).

T.4BLE 11

DESIGN FORMULAS (?L= 4) EOR MU LTIHARMONIC
REJECTION FILTER
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Terms are defined in Table I and in Figs. 3 and 4.
These design formulas apply to Fig. 4. Fig. 7—Computed response of desigmexamp]e filter as shown

NOTE: To convert the network of Fi~. 4 to the strip-line filter of in Fig. 5 and described in Part B of text.

Fig. 5, use the identity defined in Fig. 6 for the double stub (Stub
No. 3).
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Fig. 5—Exact strip line equivalent of Iilter of Fi$. 4 with easily
realizable junctions and equal-length stubs and connecting line
sections.
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Fig. 6—Two stubs connected in series and the equivalent arrange-
ment of two stubs connected in tandem, with conditions on the
line impedances for congruency of terminal reactance.

at both the lower and upper harmonic frequencies, the

long stub places a short circuit at its junction with the

main line. This short circuit can now be referred to ex-

ternal positions on the input lines. Using normalized

units throughout, we compute the input susceptances at

each end by transmission line theory. On the right of the

short circuit we have an open-circuited stub whose im-

pedance is 3.5003 in shunt with a short-circuited stub

(the connecting line) whose impedance is 1.4,00. The

input susceptance at that end is

B,n = —~
()

tan ‘2 –——
3.5003 2 till 1.:OOO’O’ (; :)”

At the second harmonic frequency cd= ?un/3, where

Bi. = 0.495 – 0.413= 0.082, which also is the susceptance

of an open-circuited line of 4.7 electrical degrees. Thus

at the second harmonic frequency there is a short circuit

plane external to the filter (90 –4. 7) = 85..3 degrees from

the right-hand terminal. Similarly at the fourth

harmonic frequency there is an external open circuit

plane 4.7 degrees from the right-hand terminal. Finally,

through computations requiring two steps rather than

one, the virtual short- and open-circuit positions on the

left input line external to the filter are found to be as

follows: 1) an open circuit at the second harmonic 25,3

clegrees from the terminal , and 2) a short circuit at the

fourth harmonic 64.7 degrees from the terminal. In the

above calculations all electrical angles are given for

specific (harmonic) frequencies which must be used in

converting the electrical distances to physical lengths or

to units of ho, the wavelength at the third harmonic or

design frequency.
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APPENDIX

PROOF OF THE EQUALITY OF THE NETWORKS IN FIG. 6

The impedance at Terminals TT’ of the left-hand

network of Fig. 6 is

Zin = jZ” tan f$ – jZ’ ctn @ (8)

where @ is the electrical length of each section of trans-

mission line. The impedance of the right-hand network

at TT’ is the input impedance of a line ZA, terminated

by an impedance ( –jZ~ ctn +)

The above equation is then put in the form of (8):

ZA2 ZAZB
Zin = j tan @ – ctn f+. (9)

.z~ + ZB .zA + ZB

The Zi. of (8) and (9) can be made equal by equating

the coefficients of the corresponding terms of their right-

hand members,

.ZA2 ZAZB
~ft = z’ = (lo)

2.4 + ZB z~ + ZB

The solution of (10) for 2A and ZB yields,

2A = Z’ + Z“ z, = Z(I + 2’/2”) (11)

which are the formulas of Fig. 6.
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