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Summary—The exact method for designing band-stop filters in
transmission lines is here adapted to design a four-element filter that
is perfectly matched at a fundamental frequency and has infinite at-
tenuation (theoretically) at the second, third, and fourth harmonics.
The form of the filter is suitable for construction in TEM-mode
strip transmission lines. How to obtain other combinations of three
infinite rejection frequencies is also shown. Each filter is derived
from a Cauer-type prototype network obtained from published tables
of element values. The computed response of a test design is seen
to be a precise mapping of the response of the prototype.

INTRODUCTION

FILTER composed of three open-circuited stubs
A separated by two quarter-wavelength trans-
mission-line sections can be designed to have a
perfect match at one frequency and infinite attenuation
(theoretically, if the circuit were dissipationless) at any
chosen (harmonic or other) frequency [1]. The design
method is facilitated by available tables of element
values for a low-pass filter prototype [2]-[4]. By using
exact design techniques and formulas for band-stop
filters in transmission line [5]-[7], subject to certain
added constraints on the choice of a prototype, the en-
gineer can readily complete the design. The low-pass
prototype alluded to above is a simple LC ladder net-
work consisting of three reactive elements (z=23).

The purpose of this paper is to extend this design
method to the case of a harmonic rejection filter having
infinite attenuation for three clustered! harmonic fre-
quencies. With this slightly more complex method there
is still zero attenuation of the fundamental frequency.
Instead of having pass bands between the three specified
harmonic frequencies, the filter attenuation falls to a
minimum value fixed by the choice of the prototype
element values. The prototype is a (low-pass) Cauer-
type network (# =23 or 4) having one finite frequency of
infinite attenuation. Exact design formulas are used [6],
and published tables of element values for these filters
[8] are employed, as before.

By means of an exact mapping procedure [5]-[7]
the frequency of perfect match w,” shown in the at-
tenuation curve of the low-pass prototype (Fig. 1), is
made to map into the fundamental frequency w, of the
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! The lower and higher harmonic frequencies must be equi-spaced
from the middle frequency.
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Fig. 1—Attenuation of a low-pass filter (n=4) with Chebyshev
response, vs frequency normalized to the fundamental w,.

Fig. 2—Attentuation of a transmission-line filter that is matched at
the fundamental frequency, has infinite attenuation of the sec-
ond, third, and fourth harmonics, and which is derived from the
prototype by an exact method.

transmission line filter (Fig. 2). At the same time, the
frequency of infinite attentuation wy’ is mapped into,
say, the second and fourth harmonics of the transmission
line filter, 2w, and 4w, respectively, while infinite fre-
quency in the frequency plane of the prototype is
mapped into the third harmonic 3w,. Other combina-
tions are possible, as is explained below. Note that for
this case, 3w, is also labelled wy which is the design fre-
quency for which the line sections are a quarter-wave-
length long. In this procedure the second (or middle)
infinite rejection frequency is always the design fre-
quency wo, from which the other two infinite rejection
frequencies are equi-spaced.

As with all transmission-line filters designed by this
method, the response shape (as in Fig. 2, for example) is
periodic in w with an interval 2w, and each period has a
symmetry axis at odd multiples of wy.

The design method consists in first determining the
normalized value of wy’ (Fig. 1) needed for the mapping
process, which is fully defined in Table I. This fre-
quency, wy, and the specified maximum pass-band
attenuation 4, uniquely determine the prototype ele-
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TABLE 1
DEFINITION OF PARAMETERS AND MAPPING FUNCTION

1. Definition of Paramelers
w’=Prototype frequency
w=Transmission line filter frequency
A= awzl
a=cot (7/2 ws/w)
wy’ =frequency of infinite attenuation of the prototype filter
ws=lowest of three harmonic frequencies to be rejected
wy=design frequency at which all line sections are No/4 long;
also the middle harmonic frequency

2. Mapping Function
w'=A tan (v/2 w/wo)

3. Corresponding Frequencies

w/
plane w-plane
0 mwy (m is always even) | Center frequency of all pass bands
(2 mwo T w, Frequency of perfect match
(fundamental)
wr’ mwy t oy Upper edge of pass band
s’ #iwe T o, Beginning of stopband
wy’ Mo L we Infinite rejection frequencies
0 nwo(# odd) Infinite rejection frequencies
(n=1) Design frequency

ment values. The prototype is then directly trans-
formed to a transmission-line equivalent, which is
further modified to make it suitable for construction in
strip line.

The following example illustrates the method. Here
the second, third, and fourth harmonics will be com-
pletely suppressed theoretically (Fig. 2). A four-reactive
element prototype (z=4) will be used. (Although three
elements would also suffice for infinite attenuation of
three harmonic frequencies, the minimum attenuation
between harmonics would fall to a lower value.)

DrsigNy METHOD
A. Findings the Prototype Circuit Element Values

The prototype filter (n=4) is shown in Fig. 3, and
tables of element values, including values of 4, 4,, wy’
and w,’ for this circuit as defined in Fig. 1 are given on
pp. 37 to 56 of [8], but in reverse order of that in Fig. 3.
([8] is a book published by Telefunken of Western
Germany, which contains tables of element values for
low-pass filters with equi-ripple attenuation charac-
teristics in both the pass band and stop band. The
fineness in the variation of the parameters which dis-
tinguish one filter design from its nearest neighbors in
the tables, is the quality which lends itself to the method
of this paper and permits the bypassing of what might
otherwise be quite complicated mathematics.)

Each table gives many designs of the same circuit, all
with the same maximum pass-band reflection co-
efficient (which is different for each table) but with dif-
ferent positions of the finite poles of attenuation. How-
ever, only one design of each table {ulfills the require-
ments of this procedure. The immediate problem is to
find that set of designs. The tables are so arranged that
to do so it is only necessary to establish a simple rela-
tionship between w;” and w,’. One then determines which
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Fig. 3—Low-pass prototype (z=4) with element values g, defined
in terms of L (henries), C (farads) and R (chms).

line of any table (each line specifies a complete proto-
type filter) satisfies this relationship; the same line of all
tables (for this circuit) will also satisfly that relationship.
(Lines in the table are indexed by the modular angle 6
for easy identification.) This also means, as can be as-
certained by examining the tables of element values,
that w.’ and w,” will be the same for all prototype circuits
in the set, which is a welcome simplification. However,
each circuit will have a different pass-band tolerance. We
first note the inverse relationship between pass-band and
stop-band frequencies which is characteristic of Cheby-

shev rational function filters [9]
OJ2,Cl)pl = wslwl,- (1)

Since wi’ =1 for the prototype, we obtain

w, = . (2)

Next we find w,” from the mapping function of Table I.
Thus

w,? = awy tan (rw,/2wo) (3)

where w.’ is the frequency of infinite attenuation in the
prototype frequency plane. (Recall that we wish to map
w,’ into the second harmonic frequency in the frequency
plane of the transmission-line filter.?) The bandwidth
factor (here it is more like a distortion factor), is de-
fined by

a = ctn (7!'0.’2/2(.00). (4)

Next, after substituting wy=(3/2)w: in (4) we solve for
a obtaining a¢=1/4/3, thereby fully specifying the
mapping parameters.
Now we substitute this value of ¢ into (3) and solve
for w,” where w=wy/3, obtaining
w2'
w, = — 5
3 (3)
Finally, combining (2) and (3) yield the desired rela-
tionship?

w2'2 = 30.)3’. (6)

2 See Table I for a list of corresponding frequencies.

3 One might also establish a similar relationship between L; and C;
of Fig. 3, since these elements uniquely determine «;’. For this case
one would obtain 3A2L;Cs=1, whence, with A=aw,’=1.6011 the rela-
tionship L;Cy=0.129929 would have to be satisfied. The example to be
discussed in this paper (case of §=27° of the element tables for n=4)
satisfies this relationship with 0.1 per cent error.
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The set of suitable prototype circuits is found by sub-
stituting into (6) pairs of values wy’ and w,” from one of
the tables of element values [8] until agreement is
reached between the right and left members, inter-
polating if necessary. It is thus found that the pair of
values w,’ =2.539, wy' =2.773, for modular angle § =27°,
is the best solution since it satisfies (6) with only a 0.1
per cent error. By comparison, the next best pair (with
§=28°), although differing from the above pair by ap-
proximately only one per cent, when inserted in (6) yields
greater than a one per cent error. The pair of values of
w,’ and wy for 8=26° again different by only one per
cent from those for #=27°, yields more than a 5 per
cent error. Therefore interpolation in this case is prob-
ably not necessary and each line indexed by § =27° with
ws =2.539 and ws’=2.773, of the element value tables
for the circuit of Fig. 3, may be used for a multi-
harmonic filter prototype.

B. Applying the Exact Design Method

The design formulas in Table I1 of [7] for the case
n=4 are here adapted to obtain design formulas for
the quarter-wave stubs and connecting lines in Fig. 4.
Note that the prototype in Fig. 3 has one two-element
branch (Ls, Cs) while the previous formulas [6] were
based on the use of a simple shunt-L series-C prototype
network. For this reason the formulas for =4 must be
revised slightly. The formula for one of the simple shunt
stubs must be replaced by two formulas, one for a short-
circuited stub Z3"/, and one for an open-circuited stub
24, as shown in Fig. 4. The only stub formula in the
original design equations that is suitable for replace-
ment is the formula for Z3, since only that formula owes
its derivation to a direct mapping of the corresponding
prototype element, without the application of Kuroda's
identity [5], [6]. The same is true for one inner stub in
most of the formulas for other values of #, and the stub
in question can be identified by the fact that its formula
has one term only [6]. The set of modified formulas for
n=4 is given in Table II. In the design formulas of
Table II the elements R, L, and C are replaced by g,, de-
fined in Fig. 3. Next, we choose one of the many usable
networks. The particular network chosen here is the
first listed for # =4 with equal terminations (the case of
0=27° on p. 37 in [8]). The reason for this choice is that
the two extreme values (go and gs”’) have the smallest
ratio for any design of the set (§=27°), and this is help-
ful in obtaining realistic values of impedance for lines
and stubs. The pass-band tolerance, incidentally, is also
the least. (The maximum reflection coefficient for this
set of element values is one per cent, and the correspond-
ing attenuation loss is 0.004343 db.) The element val-
ues are go=1, g1=0.4138, g,=0.7926, g/ =0.6285, g,"’
=0.2069, go=0.2498, g;=1.

Now we compute A =aw,’ = 1.6011, and then, with the
aid of Table IT we compute the stub and line imped-
ances as defined in TFig. 4. These impedances (not
all of which are final) are Z,;=3.5093, Z,=0.88638,
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Z3=0.33127, Z3'"=0.99393, Z4=3.5003
Z12= 13985, 2232 18705, Zg4= 14000

The final step is to convert the two-wire filter of Fig.
4 into a type suitable for strip-line construction, as in
Fig. 5. The difference between these two forms of the
same filter lies in the third stub (or stubs). In Fig. 5, the
third stub, which is open-circuited like the others in that
network, consists of two Ao/4 sections in tandem in
place of two stubs in series [10]. No difficult series-
parallel connection is required here, as it is in the filter
of Fig. 4.* The formulas for converting the series stubs
to the tandem stubs are given in Fig. 6, and their proof
is given in the Appendix. The stub impedances (Fig. 5)
are found to be Z;,=1.3249 and Z;p=3.9747, thus com-
pleting the design in terms of normalized impedances.
The computed filter response in Fig. 7 is seen to pre-
cisely confirm the foregoing theory.

It is worth noting that the length of the short stubs
alone determines the center frequency of infinite
attenuation (3w,). The relative positions of the other
two frequencies of infinite attenuation (2w, and 4w,)
depend on the relation between the two sections of the
long stub

and

Zsa n?
— = Cin 2
Zsp

where ¢, is the electrical length of each section of the
long stub at frequency ws (here ctn? ¢2=1/3). Although
the element values of the prototype circuit do not in
either case determine the conditions for suppression of
specific harmonics, they do play a part in determining
all other aspects of the filter response.

It is often desirable to know the positions of the
virtual open- and short-circuit planes as, for example,
when a filter of this type is used with a varactor har-
monic generator. The open- and short-circuit planes at
the three harmonic frequencies are easily determined as
follows: First, in the case of the center (third) har-
monic frequency it is clear that the open-circuited
quarter-wave long stubs at each end of the filter pro-
duce an effective short circuit at both terminals. Second,

. *The series-parallel stubs Zs' and Z,'” of Fig. 4 are not, however,
impossible to construct in stripline. They can be made of either

1) an open-circuited shunt stub within an open hollow cylinder which
is sandwiched betweert and short circuited to the ground planes (on the
cylinder’s far end), or

2) a shunt stub surrounded by a hollow cylinder which is open-
circuited to the line and ground planes, but is internally short-
circuited to, and supported by, the inner stub on its far end. Interest-
ingly enough, such re-entrant coaxial structures can also be used to
reduce by half the over-all length of the tandem double stub Z; of Fig.
5. In this case we would have

3) a hollow shunt stub open-circuited on its far end, within which
lies on open-circuited stub supported on its far end by the ground
planes.

Finally, the tandem double stub can be replaced byv either of two
electrical equivalents consisting of parallel-coupled lines shown in
Figs. 7 and 13 of [6], i.e., the parallel-coupled line resonator and the
spur-line resonator, respectively, used as open-circuit stubs.
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Fig. 4—Balanced transmission-line type multiharmonic rejection
filter, derived from the prototype filter of Fig. 3 bv the exact de-
sign formulas of Table I1. (Note: All stubs and connecting lines
are N/ long, where wy=3w,).

TABLE I

DEsIGN FORMULAS (#=4) FOR MULTIHARMONIC
REejeCTION FILTER

1 1+ 24A
Zi=Z4 (2 + ) Zo= 74 <__4_g°i’1>
Agog1 1+ Agogr
1 20 Za g0
Zy=12 (__#_ + _7‘4*‘4) Zoyy = —\Agpp + ————
4 14+ Agonn Ag:(l -+ Agog1)? d g0 £ 1 4 Agogs
Z4 Za
Zy'= ~ ; Zy = Zshgogy' Zy = — (1 + Agsgs)
Agogs gogs

Za 1
Zy=— (1 +———-)
£0gs Agags

Terms are defined in Table T and in Figs. 3 and 4.

These design formulas apply to Fig. 4.

NotE: To convert the network of Fig. 4 to the strip-line filter of
Iiig. 5, use the identity defined in Fig. 6 for the double stub (Stub
No. 3).

Fig. 5—Exact strip line equivalent of filter of Iig. 4 with easily
realizable junctions and equal-length stubs and connecting line
sections.

Zg
z' z
- Zn
I
T T T T
WHERE 2, =2'+ 2"
z, =2'0+£)
B z

Fig. 6—Two stubs connected in series and the equivalent arrange-
ment of two stubs connected in tandem, with conditions on the
line impedances for congruency of terminal reactances.
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Fig. 7—Computed response of design-example filter as shown
in Fig. 5 and described in Part B of text.

at both the lower and upper harmonic frequencies, the
long stub places a short circuit at its junction with the
main line. This short circuit can now be referred to ex-
ternal positions on the input lines. Using normalized
units throughout, we compute the input susceptances at
each end by transmission line theory. On the right of the
short circuit we have an open-circuited stub whose im-
pedance is 3.5003 in shunt with a short-circuited stub
(the connecting line) whose impedance is 1.400. The
input susceptance at that end is

1 <7r w) 1 (71' w>
Bp=——tan|— —]— ———cot | — —).
3.5003 2 wq 1.4000 2wy

At the second harmonic {requency w=2w./3, where
Bi,=0.495—0.413=0.082, which also is the susceptance
of an open-circuited line of 4.7 electrical degrees. Thus
at the second harmonic frequency there is a short circuit
plane external to the filter (90 —4.7) =85.3 degrees from
the right-hand terminal. Similarly at the fourth
harmonic frequency there is an external open circuit
plane 4.7 degrees from the right-hand terminal. Finally,
through computations requiring two steps rather than
one, the virtual short- and open-circuit positions on the
left input line external to the filter are found to be as
follows: 1) an open circuit at the second harmonic 25.3
degrees from the terminal, and 2) a short circuit at the
fourth harmonic 64.7 degrees from the terminal. In the
above calculations all electrical angles are given for
specific (harmonic) frequencies which must be used in
converting the electrical distances to physical lengths or
to units of A\, the wavelength at the third harmonic or
design frequency.
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APPENDIX
Proor oF THE EQUALITY OF THE NETWORKS IN FiG. 6

The impedance at Terminals 777 of the left-hand
network of Fig. 6 is

Zin=3Z"tan¢ — jZ ctn ¢ (8)
where ¢ is the electrical length of each section of trans-
mission line. The impedance of the right-hand network

at TT’ is the input impedance of a line Z4, terminated
by an impedance (—jZg ctn ¢)

—jZpctng + jZ4 tan ¢
Y 74+ j(—jZp ctn ¢) tan ¢

ZmZZ

The above equation is then put in the form of (8):
Z42

—F fa

Za+ Zs

Zin =] ne ctn ¢. (9)

Za+ Zs
The Z;, of (8) and (9) can be made equal by equating
the coefficients of the corresponding terms of their right-
hand members,

S 7 7 TR
Zi+ Zs Zys+ Zs
The solution of (10) for Z, and Z3 yields,
Za=2'+27" Zyp=2zA+2/27) (11

which are the formulas of Fig. 6.
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